c) Coherence Spectroscopy with Pulse Trains
Actively mode-locked lasers or pulsed semiconductor lasers, which are controlled by a frequency
synthesizer, are generating ultrashort light pulses with well defined and highly stable pulse
repetition rates in the MHz up to the GHz range.
Each individual pulse can create a coherent superposition of nearly degenerate atomic states or
sub-states, when the laser wavelength is tuned to an optical transition of the atoms or molecules
and the pulse is short enough to excite the involved atomic states coherently, i.e., the Fourier
transform spectrum of the pulse covers the respective sub-level splitting.
Under such conditions a new pulse already interacts with the sample, while a substantial
coherent contribution created by previous pulses is still existing. If the individual pulses are
sufficiently weak and are not erasing the already existing coherences, they can be assumed to
generate a small but constant contribution to the atomic coherences, each oscillating with the
splitting frequencies of the involved sub-states and damped at a rate gamma.
Constructive interference of these different contributions give rise to very sharp resonances in
the resulting macroscopic coherence amplitude, whenever the excitation rate or a higher harmo-
nic coincides with the atomic splitting frequency.
This coherence phenomenon is quite similar to multiple beam interference of optical rays with
damped amplitudes as known from Fabry-Perot interferometers.
Polarization Selective Detection
Such an enhanced coherent superposi-
tion can sensitively be measured by a si-
milar experimental set-up as used for
quantum beats in forward scattering, but
now tuning the laser repetition rate and
monitoring the average intensity of probe
pulses behind a crossed polarizer. There-
fore, this periodic pulse excitation meth-
od is directly measuring level splittings in
the frequency domain.
Since ground state coherent transients are characterized by extremely low relaxation rates, very
sharp resonances of ajacent level splittings can be expected. But under usual experimental con-
ditions the observed resonance width is limited by transient time-of-flight broadening of the
atoms through the probe beam.
From optical pumping experiments in alkaline atoms it is well known that an additional buffer
gas in the vapor cell considerably reduces diffusion of the atoms out of the interaction region
without sufficiently destroying the ground state coherence.
Under such conditions periodic pulse excitation allows ultrahigh resolution spectroscopy. So, the
133
Cs hyperfine ground state splitting of 9.2 GHz, e.g., can be measured with a resonance width
of only 30 Hz, which corresponds to a Q-factor (9.2 GHz to 30 Hz) of 3*10
8
. In this case the laser
operates with a pulse repetition rate of 84 MHz and scans through the atomic resonance with
the 120th harmonic of the pulse rate, which is only tuned over 0.25 Hz.
Fluorescence Detection
In an appropriate basis of atomic eigenstates an atomic coherence can be described as an oscill-
ating population difference between adjacent sub-states. This oscillation occurs with the respec-
tive splitting frequency of the sub-levels.
Pulses with the right polarization only act on special sub-states and can change the population
density of these states with a definite phase. When the pulse repetition rate or some higher
harmonic coincides with the oscillation frequency between two sub-states, the pulse train burns
a ‘hole’ into the population density with the consequence that succeeding pulses interact with
the atoms at times when the population is low. Therefore, less atoms are excited on the optical
transition and reduced fluorescence radiation is observed.
Such signal results from coherent trapping of atoms in the ground state and can be described as
a non-absorbing resonance.
With Rb and additional buffer gas in the vapor cell the atoms are excited by a semiconductor
laser on the D
2
resonance line at 780 nm. The
diode laser is directly triggered by a step reco-
very diode (comb generator) and produces
pulses as short as 40 ps at a repetition rate of
488 MHz. To ensure single-mode operation, the
laser is additionally coupled to an external re-
sonator.
The hyperfine ground state splitting of Rb-87 with 6.835 GHz is measured with the 14th harmonic
of the pulse rate by monitoring the fluorescence radiation on the D
2
line as a function of the
pulse repetition rate.
To discriminate laser straylight from the fluorescence light, the atoms are subjected to a slightly
modulated magnetic field, which also slightly and periodically shifts the atomic resonance by
some tenth Hz. This allows to use lock-in detection technique, which suppresses a larger back-
ground and in this case measures the deriva-
tive of the resonance signal as a dispersion-
like curve.
In this way the ground state splitting can be
determined with an uncertainty of less than 1
Hz, and with a stabilization of the pulse gene-
rator to the center frequency of the hyperfine
splitting such a set-up has the potential to
operate as a secondary frequency standard.
Doctoral Theses
H. Burggraf
Hochauflösende Spektroskopie mit ultrakurzen Laserpulsen am Natrium
School of Electrical Engineering, Helmut-Schmidt-Uiversity, Hamburg 1985
H. Lehmitz
Kohärenzspektroskopie mit ultrakurzen Lichtimpulsen – Zeit- und frequenzaufgelöste Messungen am Beispiel von
Cäsium sowie Voruntersuchungen zu Messungen an gespeicherten Ytterbiumionen
School of Electrical Engineering, Helmut-Schmidt-Uiversity, Hamburg 1989
W. Kattau
Frequenzaufgelöste Kohärenzspektroskopie am Rubidium 87 mit kurzen Lichtimpulsen eines Halbleiterlasers
School of Electrical Engineering, Helmut-Schmidt-Uiversity, Hamburg 1990
Refereed Publications in Journals and Conference Digests
J. Mlynek, K.H. Drake, G. Kersten, W. Lange, H. Burggraf, H. Harde
Modulated Pumping Transmission Spectroscopy
Eleventh International Quantum Electronics Conference, Bosten, 1980
H. Harde, H. Burggraf, J. Mlynek, W. Lange
High-Resolution Level Splitting Measurements Using Pulse Trains
Europhysics Conference Abstracts 5A, part II of European Conference on Atomic Physics (European Physical
Society, Heidelberg, 1981), p. 1060 (1981)
J. Mlynek, W. Lange, H. Harde, H. Burggraf
High-Resolution Coherence Spectroscopy Using Pulse Trains
Physical Review A 24, 1099 (1981)
H. Harde, H. Burggraf
High-Resolution Coherence Spectroscopy by Means of Periodic Excitation with Picosecond Pulses
Digest of Fifth International Conference on Laser Spectroscopy (Canadian Physical Society, Jasper Park, 1981), in
"Laser Spectroscopy V", ed. by B. Stoicheff (Springer Series in Optical Sciences, 1981)
H. Harde, H. Burggraf
Ultrahigh-Resolution Coherence Spectroscopy by Means of Periodic Excitation with Picosecond Pulses
Optics Communications 40, 441 (1982)
H. Harde, H. Burggraf
High-Resolution Coherence Spectroscopy with Ultrashort Light Pulses
Digest of 12th International Quantum Electronics Conference Munich,
Applied Physics B 28, p. 246 (1982),
H. Harde, H. Burggraf
Periodic Pumping Spectroscopy with Picosecond Light Pulses
Technical Digest of Eighth International Conference on Atomic Physics, Calmers University Gothenburg, Sweden,
p. B 48 (1982)
H Harde, H. Burggraf
High Precision Level Splitting Measurements with Picosecond Light Pulses
Technical Digest of Fifth Rochester Conference on Coherence and Quantum Optics (University of Rochester,
Rochester), p. 335 (1983)
H. Harde, H. Burggraf
High Precision Measurements of Atomic Level Splittings by Means of Periodic Pumping with Picosecond Light
Pulses
in ''Laser Spectroscopy VI'', Springer Series of Optical Science 40, ed. by H. P. Weber and W. Lüthy (Springer,
Heidelberg, 1983), p. 117 (1983)
H. Harde, H. Burggraf
Hochauflösende Spektroskopie mit ultrakurzen Laserimpulsen
Laser und Optoelektronik 3, 235 (1983)
H. Harde, H. Burggraf
High Precision Level Splitting Measurements with Picosecond Light Pulses from an Injection Laser
in ''Coherence and Quantum Optics V'', ed. by L. Mandel and E. Wolf (Plenum Publishing Corporation, New York,
1984), p. 993 (1984)
H. Burggraf, H. Harde
Measurement of the Pressure and Temperature Shift in the Na Hyperfine Frequency by a Train of Ultrashort Light
Pulses
Conference Abstracts of Ninth International Conference on Atomic Physics, ed. by R. S. Van Dyck Jr. and
E. N. Fortson (University of Washington, Seattle, 1984), p. B 41 (1984)
H. Burggraf, W. Kattau, M. Kuckartz, H. Harde
Applications of Ultrashort Light Pulses for High-Precision Measurements in Atoms
Proceedings of Optics in Engineering Measurement, SPIE 599, 350 (1985)
H. Lehmitz, W. Kattau, H. Harde
Modulated Pumping in Cs with Picosecond Pulse Trains
in ''Methods of Laser Spectroscopy'', ed. by Y. Prior et al., Plenum Press, New York, p. 97 (1986)
W. Kattau, H. Harde
Optical Pulse Train Interference Spectroscopy with an Injection Laser
Technical Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C.,
1986), p. 202 (1986)
Contributions on National Conferences and Meetings
H. Burggraf, H. Harde
Untersuchungen zum Betrieb eines synchron gepumpten modengekoppelten Farbstofflasers mit veränderlicher
Pulsrepetitionsrate
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Fachausschuss Kurzzeitphysik, Würzburg, 1. März
1982, Verhandl. DPG (VI) 17, 474 (1982)
H. Burggraf, H. Harde
Untersuchungen zur Druckverschiebung in der Na-Hyperfeinstrukturaufspaltung mit Hilfe der Periodischen
Pulsanregung durch Pikosekunden Laserimpulse
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Sektion Quantenoptik, Regensburg, 17. März 1983,
Verhandl. DPG (VI) 18, 453 (1983)
H. Burggraf, B. Schröder, H. Harde
Messung der Druck- und Temperatureinflüsse von Edelgasen auf die Hyperfeinaufspaltung des Na-
Grundzustandes durch Kohärenzspektroskopie mit ultrakurzen Laserimpulsen
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Sektion Quantenoptik, Gießen, 20. März 1984,
Verhandl. DPG (VI) 19, 821 (1984)
H. Hoidis, H. Lehmitz, H. Harde
Periodische Pulsanregung am Cs
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Sektion Quantenoptik, Bayreuth, 27. März 1985,
Verhandl. DPG (VI) 20, 1054 (1985)
W. Kattau, C. Peine, H. Harde
Hochauflösende Kohärenzspektroskopie mit Halbleiterlasern
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Sektion Quantenoptik, Bayreuth, 27.März 1985,
Verhandl. DPG (VI) 20, 1055 (1985)
H. Lehmitz, H. Harde
Moduliertes Pumpen mit Pikosekunden Lichtimpulsen am Cs
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Sektion Quantenoptik, Heidelberg, 17. März 1986,
Verhandl. DPG (VI) 21, 729 (1986)
W. Kattau, H. Harde
Hochauflösende Kohärenzspektroskopie am Rb mit einem Halbleiterlaser
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Sektion Quantenoptik, Heidelberg, 17. März 1986,
Verhandl. DPG (VI) 21, 724 (1986)
W. Kattau, H. Harde
Periodische Pulsanregung zum Betrieb eines
87
Rb-Sekundärnormals
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Arbeitsgemeinschaft Quantenoptik, Essen, 6. März
1989, Verhandl. DPG (VI) 24, Q 5.4 (1989)
Physics & Climate